Ilustración: Turrilandia |
Nonsense
verse is a type of poetry that mathematicians usually enjoy. Perhaps this is so
because mathematical discovery itself has a playful
aspect--playing with non-sense in an effort to tease the sense out of it.
Lewis Carroll, English writer and mathematician, often has his characters offer speeches that are
a clever mix of sense and nonsense. Let’s read the words of
the Butcher in Carroll’s nonsense poem “The Hunting of the Snark”. The Butcher
is explaining why 2+1=3 and his calculation looks like
this:
[ (3 + 7 + 10) x (1000-8) ] / 992 - 17 = 3
It is a true calculation, but would have worked as well for any other starting number besides 3.
[ (3 + 7 + 10) x (1000-8) ] / 992 - 17 = 3
It is a true calculation, but would have worked as well for any other starting number besides 3.
Taking Three as the subject to reason about—
A convenient number to state—
We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.
The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two.
Then subtract Seventeen, and the answer must be
Exactly and perfectly true.
A convenient number to state—
We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.
The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two.
Then subtract Seventeen, and the answer must be
Exactly and perfectly true.
Os matemáticos adoitan gustar da poesía “Nonsense” (sen sentido), quizais
porque tamén as matemáticas teñen algo de divertimento, de xogo con aquilo que
parece non ter sentido tentando atoparlle lóxica. Lewis Carroll, escritor e
matemático inglés, a miúdo dota os seus
personaxes dun discurso no que se mestura a lóxica e o sen sentido. Leamos
estas palabras do carniceiro no poema “A caza do Snark”. O carniceiro explica
por que 2+1=3 do seguinte xeito:
[ (3 + 7 + 10) x (1000-8)
] / 992 - 17
= 3
O cálculo é correcto pero tamén o sería con calquera outro número, non só co 3.
O cálculo é correcto pero tamén o sería con calquera outro número, non só co 3.
Tomando o tres como base deste razoamento-
Unha cifra moi fácil de escribir-
Sumámoslle sete e dez, e despois multiplicámolo
Por mil menos oito.
Despois, como ves, dividimos o resultado
Entre novecentos noventa e dous.
Logo restamos dezasete, e a resposta debe
Ser exacta e perfectamente certa.